
1

HYDROINFORMATIK 1
C++ Programmieren in Natur-
und Ingenieurwissenschaften

(Einführung)

Dr. Thomas Kalbacher
Department für Umweltinformatik
Helmholtz-Zentrum für Umweltforschung GmbH - UFZ
thomas.kalbacher@ufz.de / http://www.ufz.de

Herausforderungen in der
Umweltsystemanalysen
(ohne Handouts)

2

• Rückblick bzw. Quiz

• Object-Oriented
Programming

• Grundlagen, Konzept, Klassen

3

I hear, and I forget;
I see, andI remember;
I do, and I understand.

Confuzius, 551-479 b.C.

Hydroinformatik I
C++ Einführung

Kurzer Blick zurück

Some Basics, Pointer &
Operators

3

Quiz: What is the output?
int p(char * str)
{

printf("%s\n", str);
return 0;

}

int global = p("global");

void f()
{

p("f");
static int local = p("local");

}

int main()
{

p("start"); f(); f(); f(); p("stop");
return 0;

}

Hydroinformatik I
C++ Einführung

Object‐Oriented Programing

4

GEO PNT PLY SFC VOL
vector vector vector vector

INTRO

ST

BC

IC

NUM

TIM

KER

EQS

SOL

MATAu = b
MAT_List

TIM_List

KER_List

BC_List

IC_List

ST_List

PCS

names

PCS_List

NUM_List

SOL_List

MSH NOD ELE

ELE_List

ELE_VectorNOD_Vector

NOD_List

MSH_List

Software
becomes
extremely
complex

Group Size & Scale

Re-Usability

Modularity

Complexity

What are Software / Programming Concepts?

Names / Terms

• Unstructured Programming,

• Procedural Programming,

• Modular Programming and

• Object-Oriented Programming.

Introduction

I
N
T
R
O

C
O
N
C
E
P
T
S

O
O
P

G
E
O

M
S
H

P
C
S

unstructured
procedural

modular

object-oriented

5

Unstructured Programming:

usually the way how beginner learn to make “small” programs.

The main program

• stands for a sequence of commands

• modifies data directly

• operates on global data.

Concepts: Unstructured Programming

I
N
T
R
O

C
O
N
C
E
P
T
S

O
O
P

G
E
O

M
S
H

P
C
S

Disadvantage:

large programs + same sequences are needed at different locations
 sequences must be copied

 Idea: extract these sequences, name them and offering a technique to call
and return from these procedures.

Procedural Programming :

• A procedure call is used to start the
procedure.

• After the sequence is processed, flow
of control proceeds right after the
position where the call was made.

• The main program is responsible to
pass data to the individual calls.

• Now a program can be viewed as a
sequence of procedure calls.

• The flow of data can be illustrated as
a hierarchical graph, a tree, for a
program with no subprocedures

Concepts: Procedural Programming

I
N
T
R
O

C
O
N
C
E
P
T
S

O
O
P

G
E
O

M
S
H

P
C
S

6

Procedural Programming :

Advantages:

• If a procedure is correct, every time it
is used it produces correct results.

• In cases of errors you can narrow
your search to those places which
are not proven to be correct. After the
sequence is processed, flow of
control proceeds right after the
position where the call was made.

Disadvantages:

• No usage of subprocedures, general
procedures or groups of procedures.

I
N
T
R
O

C
O
N
C
E
P
T
S

O
O
P

G
E
O

M
S
H

P
C
S

Concepts: Procedural Programming

Modular Programming :

With modular programming

- Procedures of a common functionality
are grouped together into separate
modules.

- A program now divided into several
smaller parts which interact through
procedure calls and which form the
whole program.

- Each module can have its own data
(1 internal state).

- Modules manage their internal state
by calls to their procedures.

I
N
T
R
O

C
O
N
C
E
P
T
S

O
O
P

G
E
O

M
S
H

P
C
S

Concepts: Modular Programming

7

Modular Programming :

Disadvantages:

- Explicit Creation and Destruction:
more complex data structures
(vectors, lists, arrays, etc) must be
explicit created and destructed.

- Decoupled Data and Operations:
Decoupling of data and operations
leads usually to a structure based on
the operations rather than the data.

I
N
T
R
O

C
O
N
C
E
P
T
S

O
O
P

G
E
O

M
S
H

P
C
S

Concepts: Modular Programming

Definition:

Object-oriented programming may be seen as a collection of cooperating
objects, as opposed to a traditional view in which a program may be
seen as a list of instructions to the computer. In OOP, each object is
capable of receiving messages, processing data, and sending messages
to other objects. Each object can be viewed as an independent little
machine with a distinct role or responsibility.

(From Wikipedia, the free encyclopedia)

I
N
T
R
O

C
O
N
C
E
P
T
S

O
O
P

G
E
O

M
S
H

P
C
S

Concepts: Object-Oriented Programming

8

Structure and Relationships:

• Definition of data types of data structures, but also the types of
operations (methods, functions) that can be applied to the data
structure.

• The data structure becomes an object that includes both data and
functions.

• Relationships between one object and another: For example,
objects can inherit characteristics from other objects.

I
N
T
R
O

C
O
N
C
E
P
T
S

O
O
P

G
E
O

M
S
H

P
C
S

Concepts: Object-Oriented Programming

I
N
T
R
O

C
O
N
C
E
P
T
S

O
O
P

G
E
O

M
S
H

P
C
S

OOP: Basic Motivation

The basic motivation for an object-oriented structure is

 Re-Usability:
- Existing objects (perhaps written by another software developer),
can be simply used.

 To control Complexity:
- Hardware and software became increasingly complex.
- Long term developments make software more complex.
- Researcher must maintain the software quality.

 Modularity:
- The source code for an object can be written and maintained

independently of the source code for other objects. Once
created, an object can be easily passed around inside the
system.

9

I
N
T
R
O

C
O
N
C
E
P
T
S

O
O
P

G
E
O

M
S
H

P
C
S

I
N
T
R
O

C
O
N
C
E
P
T
S

O
O
P

G
E
O

M
S
H

P
C
S

Real-world objects share two characteristics:

1. They all have state:
(e.g. a dog: name, color, breed, hungry)

2. They all have behavior:
(e.g. a dog: barking, fetching, wagging tail)

Bicycle state: current gear, current pedal
cadence, current speed

Bicycle behavior: changing gear, changing pedal
cadence, applying brakes

10

I
N
T
R
O

C
O
N
C
E
P
T
S

O
O
P

G
E
O

M
S
H

P
C
S

OOP: Objects

Object = Attributes + Methods

message

message

message

message

attrib
utes

method

method

method

method

real world objects = State + Behavior

Message Passing:
“The process by which an
object sends data to
another object or asks the
other object to call a
method. ”Also known to
some programming
languages as interfacing.

I
N
T
R
O

C
O
N
C
E
P
T
S

O
O
P

G
E
O

M
S
H

P
C
S

OOP: Objects

change_gears

change_cadence

brake
- speed

- cadence

- gear

Object = Attributes + Methods

11

I
N
T
R
O

C
O
N
C
E
P
T
S

O
O
P

G
E
O

M
S
H

P
C
S

OOP: Objects

• Objects vary in complexity.

• Some objects can contain other objects.

• The object remains in control of how the outside world is
allowed to use it by:

• attributing the state (current speed, current pedal
cadence, and current gear)

• and providing methods for changing that state.

//example bicycle only has 6 gears

int ChangeGear(int new_gear)
{

if (new_gear > 6)
return 6;
if (new_gear < 1)
return 1;
else
return new_gear;

}

I
N
T
R
O

C
O
N
C
E
P
T
S

O
O
P

G
E
O

M
S
H

P
C
S

OOP: Objects

Object = Attributes + Methods
• Attributes : data that describe the internal status of

an object
– “member variables” in C++

– inaccessible from outside Encapsulation
• Methods : functions which can access the internal

status of an object
– “member functions” in C++
– accessible from outside
– manipulates attributes

12

I
N
T
R
O

C
O
N
C
E
P
T
S

O
O
P

G
E
O

M
S
H

P
C
S

OOP: Class

What is a class?

• A class defines the abstract characteristics of an object,
including the object's attributes and the object's methods.

• The characteristics of the class should make sense in
context.

• The code for a class should be relatively self-contained
(generally using encapsulation).

• Collectively, the properties and methods defined by a class are
called members.

Example: Thousands of bicycles but all of the same make and model.
Each bicycle was built from the same set of blueprints.

Each bicycle == instance of the class == object
Blueprint == class.

I
N
T
R
O

C
O
N
C
E
P
T
S

O
O
P

G
E
O

M
S
H

P
C
S

OOP: Class

class Bicycle {
private:

float speed;
float cadence;
int gear;

public:
void change_gears(int gear);
void break();
void change_cadence(float cadence);

};

In C++:

• A class is a template definition of
the methods and variables.

• An object is a specific instance
of a class; it contains real values
instead of variables. The object or
class instance is what you run in
the computer.

13

I
N
T
R
O

C
O
N
C
E
P
T
S

O
O
P

G
E
O

M
S
H

P
C
S

OOP: Class

instance 1

- cadence = 60 [rpm]
- gear = 3rd

Different instances can have different values of member
variables

- speed = 4 [mph]
- cadence = 12 [rpm]
- gear = 1st

- speed = 35 [mph]
- cadence = 80 [rpm]
- gear = 5th

instance 2

instance 3

- speed = 10 [mph]
class
Bicycle

I
N
T
R
O

C
O
N
C
E
P
T
S

O
O
P

G
E
O

M
S
H

P
C
S

A class can have subclasses that can “inherit” all or
some of the characteristics of the class.

• In relation to each subclass, the class becomes the
superclass.

• Subclasses can also define their own methods and
variables that are not part of their superclass.

• The structure of a class and its subclasses is called
the class hierarchy

OOP: Inheritance

14

I
N
T
R
O

C
O
N
C
E
P
T
S

O
O
P

G
E
O

M
S
H

P
C
S

OOP: Inheritance

MountainBike

Base class (Super class)

RaceBike TandemBike

Bicycle

Derived classes
(Subclasses) Inheritance

‘Subclasses’ are more specialized versions of a class, which
inherit attributes and behaviors from their parent classes, and
can introduce their own.

I
N
T
R
O

C
O
N
C
E
P
T
S

O
O
P

G
E
O

M
S
H

P
C
S

OOP: Inheritance

Advantages:

• Selective reuse of classes, by creating new derived classes with
new included features.

• Create new classes specific to new problem domains.

• Increases the Extensibility of programs.

• Class hierarchy allows to construct frameworks.

• Simplifies the program structure and enables generic, “logical”
programming.

15

Encapsulation:

Objects reveal their "outside" through “touchable” behaviour, but
keep their "inside" hidden.

I
N
T
R
O

C
O
N
C
E
P
T
S

O
O
P

G
E
O

M
S
H

P
C
S

OOP: Encapsulation

The class keeps the
functional details
hidden from objects
that send messages
to it.

We do not need to know how an object works to know how it behaves.

CLASS

Methods form the
object's interface with
the outside world;

I
N
T
R
O

C
O
N
C
E
P
T
S

O
O
P

G
E
O

M
S
H

P
C
S

change gears

change cadence

brake
- speed

- cadence

- gear

OK

OK

NO!

OK

• Objects should not access to attributes of other objects directly.
• Access to the attributes is done by methods!
• Such methods ensure the consistency of the attributes.

OOP: Encapsulation

16

I
N
T
R
O

C
O
N
C
E
P
T
S

O
O
P

G
E
O

M
S
H

P
C
S

With Encapsulation, we

• separate what's relevant from what's not.
• collect what's relevant in one location.

Why build forts, castles,
bunkers, customs, etc?
To ensure that what's outside
doesn't mess with what's inside.

Why put up roadblocks
or prisons?
To ensure that what's
inside stays there.

Why put all the fuses in
one fuse-box?
To localized the problem
when it occurs.

Protecting DataManaging Change Managing Complexity

OOP: Encapsulation

I
N
T
R
O

C
O
N
C
E
P
T
S

O
O
P

G
E
O

M
S
H

P
C
S

OOP: Abstraction

Abstraction is

• simplifying complex reality by modelling classes appropriate
to the problem.

• working at the most appropriate level of inheritance.
• An Art of concentrating the essential and ignoring the non-

essential.

In Computer Science, Abstraction is a mechanism to
reduce details so that one can focus on a few concepts at
a time.

17

I
N
T
R
O

C
O
N
C
E
P
T
S

O
O
P

G
E
O

M
S
H

P
C
S

OOP: Abstraction

Lets "chunk" things by
identifying significant
commonalities (whilst ignoring
trivial differences)...

I
N
T
R
O

C
O
N
C
E
P
T
S

O
O
P

G
E
O

M
S
H

P
C
S

OOP: Abstraction

How we choose to abstract
depends on what we consider
to be "significant"... plants,
animals, dangerous animals

18

I
N
T
R
O

C
O
N
C
E
P
T
S

O
O
P

G
E
O

M
S
H

P
C
S

OOP: Abstraction

This leads to classification:
"All men are animals" by

which we mean: "All men
share certain attributes with
all other entities which we
also label 'animals'"

I
N
T
R
O

C
O
N
C
E
P
T
S

O
O
P

G
E
O

M
S
H

P
C
S

OOP: Abstraction

Typically, we define the abstractions form a hierarchy

19

I
N
T
R
O

C
O
N
C
E
P
T
S

O
O
P

G
E
O

M
S
H

P
C
S

OOP: Abstraction

Types of Abstraction:

Abstraction of:

• Appearance (e.g. size)

• Structure (e.g. 2 eyes)

• Functionality (e.g. can carry
heavy things)

• Privilege (needs protection)

• Purpose (high population)

I
N
T
R
O

C
O
N
C
E
P
T
S

O
O
P

G
E
O

M
S
H

P
C
S

OOP: Polymorphism

Polymorphism :

Objects belonging to different data types can respond to calls of
methods of the same name.

A function that can be applied to values of
• different types of arguments and/or
• different number of arguments

is known as a Polymorphic Function or Overloaded Function.

// Example abs with different argument types
int abs(int n);
long abs(long n);
double abs(double n);
// Example with different numbers of arguments
int strcpy(char *str1, char *str2, short unsigned n=65535);
// second overloaded function
int strcpy(char *str1, char *str2);

20

Compilation: the technical way
A Project is build by following pseudo code:

for all .cpp-files x.cpp in Project:
preprocess x.cpp
compile x.cpp :

creates file x.o

link all x.o and some libraries:
creates file x.exe

translation
unit

The Preprocessor
 Calls for the Preprocessor start with #.

 #include connects a Header-File.

 #define defines a Macro: The Keyword will be
replaced in the whole program by the given
“text”.

#include <stdio.h>

#define PI 3.141596

21

More than One File
A C/C++-Project can consist of more than one file:

 .c-file: source code file.
(in C++: also .c or .cpp)

 .h-file: header file.
(in C++: also .hpp)

Distribution of Source Code

#include "header.h"

int max(int x, int y)
{

if (x > 0) return x;
else return y;

}

#include "header.h"

...

z = max(12, 3);

...

int max(int x, int y);

part1.cpp part2.cpp

header.h Declaration

Definition

22

Declaration & Definition
Declaration of X =

Description of “what is X”

Definition of X =
Declaration of X

+ Creation of X

» X can be declared many times, but it can be only defined once. «
Header files should contain only declarations but no definitions

because all linked source code files would define a new X.

Declaration & Definition (2)
Declaration Definition

 Variables:
extern int x; int x;

 Functions:
int add(int, int); int add(int a, int b)

{
return a + b;

}

23

Validation of Declarations
Rule 1:

»A symbol in the source code is only known
below its declaration.«

Rule 2:
»A Declaration, which is placed inside a
{ } -Block, is only locally valid within this
block.«

One Definition Rule
Rule: » Each Entity (Variable, Type, Function,

Class) can be only defined once. « (One
Definition per Translation Unit)

Remarks:
 Multi definitions are possible but can produce trouble for the linker.
 Local Variables (in different functions) can have the same name, of course.
 C++ Classes: Here we can redefine classes in each translation unit because

the definition of the class do produce a entity which is used by the linker.

24

Member-Functions
Beside the Member-Variables C++ knows

additionally Member-Functiones:

class Hamster
{

int age;
char name[256];
void feed();

};

Hamster billy;
billy.feed();

Declaration and Definition
Declaration Definition

 Classes:
class Hamster; class Hamster

{
int weight;
int feed(int);

};

 Member-Functions:
class Hamster int Hamster::feed(int x)
{ {

int feed(int); weight += x;
}; }

25

Programming Classes
Typical Procedure:

 Inside the .h-file: Class Definition
 Inside .cpp-file: Definition of the Member-

functions.

Including the header file to many cpp files has no influence
to the memory, because class definitions do not allocate
memory and produce no code. Anyway, a class can not be
included twice in a cpp file.

 Multiple Class Definitions disturb the compiler but not the
linker, because there is no code inside the definition which
must be linked.

 It is very useful to define classes in header files und to
include these header files to the cpp files!

 Of course, member-functions can be defined as well inside
the class definition and are therefore so called inline.

 External defined member-functions can’t be multiple
defined. Multiple member function definition would
produce an error inside the linker – beside the member
function is defined inline.

Some Remarks . . .

26

private protects the members!
No Access from Outside allowed:

class Hamster

{

private:

bool is_happy;

public:

void feed() { is_happy = true; }

};

Hamster billy;

billy.is_happy = true; //ERROR!

public and privat

Constructors = Special Member-Function, that is
automatically called with the activation of the
object:

class CHamster

{

public:

CHamster();// constructor

~CHamster(); // destructor

int age;

};

Constructors don’t return any types (not even
void). They are used to initialize the object.

Constructors

27

Destructors = Destructors are called during the
Object will be destroyed.

class CHamster

{

public:

CHamster();// constructor

~CHamster(); // destructor

int age;

};

Destructors

CHamster::CHamster()
{
}
CHamster::~CHamster()
{
}

Definition of Constructors /Destructor

28

Example
Constructors and Destructors can use

Arguments

class Hamster
{

Hamster (char * name = "Billy") {
Name = name;
printf("Hamster is born! :-)\n");

}
~Hamster () {

printf("Hamster dies! :-(\n");
}
char * Name;

};

void hamsterlife()
{

Hamster billy;
printf(“Welcome the new Hamster!\n");
printf(“It’s name is %s.\n", billy.Name);

}

Start: hamsterlife()
Output:
Hamster is born! :-)

Welcome the new Hamster!

It’s name is Billy.

Hamster dies! :-(

Example

29

Member-Functions Definition
Member-Functions need a definition.

1. Possibility: Inside the Class definition

class Hamster
{

void feed()
{

//now the hamster gets some food!
}

};

2. Possibilty: Outside the Class definition

class Hamster
{

void feed();
};

void Hamster::feed()
{

//now the hamster gets some food!!
}

Member-Functions Definition

30

Declaration and Definition
Declaration Definition

 Classes:
class Hamster; class Hamster

{
int weight;
int feed(int);

};

 Member-Functions:
class Hamster int Hamster::feed(int x)
{ {

int feed(int); weight += x;
}; }

The Member-Function knows the Object

A Member-Function knows to which object it
belongs:

class Hamster

{

void feed()
{

++weight;
}
int weight;

};

Hamster billy;

billy.feed(); increase billy.weight

31

The this-Pointer
Inside the member-function the this-Pointer

points on the according Object:

class Hamster
{

void feed()
{

++(this->weight);
}
int weight;

};

this has the Type Hamster *

Overloading of „normal“ Functions
Different Functions with same Names:

int max(int a, int b)
{
if (a > b) return a;
return b;

}

int max(int a, int b, int c)
{
return max(max(a, b), c);

}

32

Overloading: Rules
The overloaded functions must be different by:

 Number of Arguments

or

 Type of the Argument at position i.

